dem2basin

Release 0.9.0

Daniel Hardesty Lewis

Jan 04, 2022

CONTENTS:

1	Introduction		
	1.1	Motivation	
	1.2	Limitations	1
	1.3	Hydrology data processing functions	2
	1.4	Core vector and raster processing functions	2
2	dem2basin		
	2.1	dem2basin package	3
3	3 Indices and tables		5
Py	Python Module Index		
Inc	ndex		9

CHAPTER

INTRODUCTION

dem2basin is Python package to simplify common surface hydrology data preparation steps.

Numerous functions are provided to: - accomplish common vector and raster processing workflows in GeoPandas and GDAL/OGR - accomplish higher-level hydrology data processing goals

1.1 Motivation

It is common for hydrologists to spend some time preparing raster and vector source data for study at the individual watershed level. Once the source data is prepared, they can then generate HAND or other common terrain model. These preparation steps are largely similar or the same each and every time the hydrologist needs generate a terrain model from source data. This package provided functions to simplify these common preparation steps.

1.2 Limitations

This packages has only been thoroughly tested against Texas Lidar raster data, NHD vector flowline and catchment data, and WBD vector HUC watershed data.

There are a number of proposed extensions, including:

- to NED 10m raster data
- to FIM / Fathom 3m raster data
- to non-WBD and non-NHD watershed data, for example internationally
- to Texas Lidar hypsography vector data
- to Texas Lidar point-cloud data

Below I only include the most thoroughly vetted dem2basin functions. These are the vector data processing functions.

While there are workable raster data processing functions, they are currently being significantly refactored, with nearly every existing function being deprecated in favor of entirely different approaches.

1.3 Hydrology data processing functions

- get_hucs_by_shape finds HUCs that intersect a study area given as a vector image
- get_flowlines_and_representative_points_by_huc assigns HUCs to NHD flowlines and their representative points, returning both
- get_representative_points retrieve representative points of flowlines and assign HUCs to these points
- set_roughness_by_streamorder assign Manning's n roughness value by each flowline's stream order
- get_catchments_by_huc assigns HUCs to NHD catchments
- set_index_by_huc returns a geodataframe with its index set to its HUC column
- find_huc_level finds the name of the HUC column of a geodataframe
- get_nhd_by_shape retrieves specific NHD layer masked by another geodataframe
- get_hucs_from_catchments dissolves NHD catchments into HUC equivalents
- write_rougness_table write Manning's n roughness table to CSV filename or concrete path

1.4 Core vector and raster processing functions

- reproject_to_utm_and_buffer finds best UTM for a geodataframe, reprojects, and then buffers it
- find_utm finds a single UTM CRS best suited for the geometries of a geodataframe
- find_common_utm determines the mode of the UTMs of the representative points of a geodataframe's geometries
- reproject_and_buffer reprojects geodataframe to a CRS and then buffers it
- write_geodataframe write geodataframe to filename or concrete path
- to_crs reprojects multiples geodataframes simultaneously
- _drop_index_columns drops columns named 'index', 'index_left', and 'index_right' either to prevent issues with geopandas functions like geopandas.sjoin and to clean up after some geopandas functions
- clip_geodataframe_by_attribute assign attribute from one geodataframe to another by their mutual index values
- set_and_sort_index sets a geodataframe's index to column and sorts by that column
- read_file_or_gdf enables functions to take either filenames or geodataframes as inputs
- get_merged_column returns the mutual elements of an identically names column in multiple dataframes
- index_dataframe_by_dataframe indexes a dataframe by another dataframe
- skip_function_if_file_exists wrapper to skip a particular step in a workflow if a file already exists
- delete_file deletes a file in all versions of Python

CHAPTER

TWO

DEM2BASIN

2.1 dem2basin package

- 2.1.1 Submodules
- 2.1.2 dem2basin.dem2basin module
- 2.1.3 dem2basin.dem2basin_1m_dev module
- 2.1.4 Module contents

CHAPTER

THREE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

d dem2basin, 3

INDEX

D

dem2basin
module, 3

Μ

module
 dem2basin,3